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Abstract

Rationale—Occupational exposure to indium compounds, including indium–tin oxide, can result 

in potentially fatal indium lung disease. However, the early effects of exposure on the lungs are 

not well understood.

Objectives—To determine the relationship between short-term occupational exposures to indium 

compounds and the development of early lung abnormalities.

Methods—Among indium–tin oxide production and reclamation facility workers, we measured 

plasma indium, respiratory symptoms, pulmonary function, chest computed tomography, and 

serum biomarkers of lung disease. Relationships between plasma indium concentration and health 

outcome variables were evaluated using restricted cubic spline and linear regression models.

Measurements and Main Results—Eighty-seven (93%) of 94 indium–tin oxide facility 

workers (median tenure, 2 yr; median plasma indium, 1.0 μg/l) participated in the study. 

Spirometric abnormalities were not increased compared with the general population, and few 

subjects had radiographic evidence of alveolar proteinosis (n = 0), fibrosis (n = 2), or emphysema 

(n = 4). However, in internal comparisons, participants with plasma indium concentrations ≥1.0 

μg/l had more dyspnea, lower mean FEV1 and FVC, and higher median serum Krebs von den 

Lungen-6 and surfactant protein-D levels. Spline regression demonstrated nonlinear exposure 

response, with significant differences occurring at plasma indium concentrations as low as 1.0 μg/l 

compared with the reference. Associations between health outcomes and the natural log of plasma 
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indium concentration were evident in linear regression models. Associations were not explained 

by age, smoking status, facility tenure, or prior occupational exposures.

Conclusions—In indium–tin oxide facility workers with short-term, low-level exposure, plasma 

indium concentrations lower than previously reported were associated with lung symptoms, 

decreased spirometric parameters, and increased serum biomarkers of lung disease.

Keywords

occupational lung disease; pulmonary alveolar proteinosis; fibrosis; Krebs von den Lungen-6; 
surfactant protein-D

Indium lung disease is a potentially fatal condition that can occur in workers exposed to 

indium compounds including indium–tin oxide (1). The disease is characterized by 

pulmonary alveolar proteinosis that may progress to fibrosis with or without emphysema 

with relatively short latency (1–13 yr from first exposure to diagnosis) (2). Epidemiologic 

studies of indium–tin oxide production facilities where indium lung disease cases occurred 

have demonstrated subclinical disease in coworkers (3–7). In one indium–tin oxide 

workplace, high-resolution computed tomography (HRCT) of the chest showed interstitial 

changes in 21% of workers and emphysematous changes in 13% (3). A multisite study in 

Japan found increases in nonspecific serum biomarkers of lung damage, including Krebs 

von den Lungen (KL)-6 and surfactant protein (SP)-D associated with increases in serum 

indium levels; the authors recommended keeping serum indium, which appeared to be a 

marker of cumulative exposure, below 3 μg/l to prevent lung disease (5).

We previously reported two cases of pulmonary alveolar proteinosis, including one fatality, 

among workers at a United States indium–tin oxide production and reclamation facility (8). 

Indium compounds encountered at the facility included indium metal, indium salts, indium 

oxide, and indium–tin oxide. Review of corporate medical surveillance data demonstrated a 

4-fold excess of spirometric restriction after hire and greater than expected declines in FEV1 

on serial examination (7). After-hire diffusing capacity defects were common. Significant 

associations between lung function abnormalities and blood indium concentration were not 

seen, but lung function test quality was inconsistent, and an insensitive blood indium 

analytical method with a detection limit of 5 μg/l had been used. Although more recently 

hired workers had fewer abnormalities, the available data suggested that additional efforts to 

reduce exposures and prevent adverse health effects were needed.

The facility introduced a variety of engineering controls and expanded respiratory 

protection. To inform further preventive interventions, we sought to better understand the 

relationship between respiratory health and exposure to indium compounds in the current 

workforce. Our primary question was: Are current exposures in the facility low enough to 

prevent lung damage? To answer this question, we focused on current workers whose 

experience would best reflect recent conditions. Given our previous observations, we chose 

to use spirometry and diffusing capacity tests, although they appeared to be of limited utility 

in other workplaces (3–5). For serum biomarkers, KL-6 and SP-D, as well as general 

markers of inflammation, were included. In addition, we explored the potential roles of 

YKL-40, a chitinase-like protein produced by macrophages that was recently reported to be 
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a predictor of disease progression in pulmonary alveolar proteinosis unrelated to indium (9), 

and granulocyte-macrophage colony-stimulating factor (GM-CSF) auto-antibodies, which 

have been demonstrated to mediate the pathogenesis of idiopathic pulmonary alveolar 

proteinosis (10). GM-CSF autoantibodies had been detected in one of the present facility's 

cases of pulmonary alveolar proteinosis, raising the possibility of an exposure-related 

autoimmune response (8). HRCT of the chest was used because of its greater sensitivity for 

subclinical changes in indium–tin oxide workers compared with plain chest radiography (3). 

Finally, we recognized the need to use an analytical method for indium comparable in 

sensitivity to that used in Japanese studies (3–5), which previously had not been available in 

the United States.

Methods

Study Design

The Institutional Review Board of the National Institute for Occupational Safety and Health 

(NIOSH) approved this study. All individuals employed at an indium–tin oxide production 

facility when this cross-sectional study was initiated (July 16, 2012) were invited to give 

written informed consent for an interviewer-administered questionnaire (available in the 

online supplement), spirometry, measurement of diffusing capacity, HRCT scan of the chest, 

and blood draw. The questionnaire addressed respiratory symptoms and diagnoses, smoking 

history, work history, and demographic information. The respiratory questions were adapted 

from validated survey instruments (11–13). We used job title and department to classify 

participants into the following department categories: production (including indium oxide 

production, indium–tin oxide production, grinding, reclaim, and research and development), 

production support (e.g., maintenance, shipping/receiving, engineer, and janitorial), 

laboratory, and office.

Pulmonary Function Tests

Standard spirometry and diffusing capacity testing was performed and interpreted according 

to published guidelines (14–18). We conducted spirometry testing using a dry rolling-seal 

spirometer (14). Test results were interpreted using reference values generated from the 

Third National Health and Nutrition Examination Survey (15, 16). We defined obstruction 

as FEV1 and ratio of FEV1 to FVC below their respective lower limits of normal (fifth 

percentiles) with a normal FVC. We defined restrictive pattern as a normal FEV1/FVC ratio 

with FVC below the lower limit of normal. We classified participants with both FEV1/FVC 

ratio and FVC below the lower limit of normal as having mixed obstructive and restrictive 

abnormalities. Participants were considered to have any spirometric abnormality if they met 

the definition of obstruction, restrictive pattern, or mixed pattern.

We measured the diffusing capacity of the lung for carbon monoxide (DLCO) using the single 

breath technique with helium as the tracer gas (17). Test results were interpreted using 

reference values generated from a stratified random sample of a state population (18). For 

alveolar volume (VA), we adjusted the predicted values by a factor of 0.88 for Black and 

Asian participants. We defined low DLCO and VA on the basis of their respective lower 

limits of normal.
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Chest HRCT

Chest HRCT scans were offered to all nonpregnant participants and were conducted at a 

local radiology center using a low-dose (∼1 mSv per scan), noncontiguous protocol. One 

participant declined HRCT but provided digital images from a chest CT done 3 months 

before the survey; we accepted these images for our analyses. All scans were systematically 

reviewed by a thoracic radiologist according to an international classification scheme (19), 

with attention to changes described in workers with indium lung disease (i.e., pulmonary 

alveolar proteinosis, fibrosis, and emphysema).

Plasma Metal and Serum Biomarker Analyses

We collected blood for measurement of metal concentrations and biomarkers of 

inflammation and interstitial lung disease. Ten milliliters of blood were collected using trace 

metal–free evacuated containers and processed to isolate plasma. Another 10 ml of blood 

were collected using serum-separator evacuated containers and processed to isolate serum. 

Samples were stored frozen at −80°C until analysis.

Plasma samples were analyzed by a commercial laboratory for indium and tin using 

inductively coupled plasma mass spectrometry assays. The indium analytical method had a 

limit of detection of 0.03 μg/l and a limit of quantification of 0.1 μg/l. The tin method had a 

limit of detection of 2.0 μg/l.

The serum concentrations of C-reactive protein (CRP), YKL-40, KL-6, and SP-D were 

measured using ELISA kits (R&D Systems, Minneapolis, MN). GM-CSF autoantibodies 

were measured by ELISA as described previously (20), and lactate dehydrogenase (LDH) 

was measured by colorimetric assay (R&D Systems). Reference values for CRP, LDH, 

KL-6, and YKL-40 were determined from serum samples from 30 healthy individuals (15 

male and 15 female subjects). Reference values for SP-D and GM-CSF autoantibodies were 

determined from serum samples from 101 healthy individuals (44 male and 57 female 

subjects). The upper limits used to define a test result as abnormally elevated were as 

follows: CRP, 14,365.5 ng/ml; LDH, 101.8 IU/ml; YKL-40, 109.8 ng/ml; KL-6, 466.7 

U/ml; SP-D, 375.2 ng/ml; GM-CSF autoantibodies, 3.0 μg/l.

Statistical Analyses

Numeric data were evaluated for normality by the Shapiro-Wilk test, summarized using 

descriptive statistics, and presented as mean ± SEM if normally distributed and as median 

(interquartile range [IQR]) if nonnormally distributed. Plasma indium was the primary 

exposure metric. Results below the limit of detection, which were few, were assigned a 

value of 0.015 μg/l (half of the limit of detection). For results falling between the limit of 

detection and the limit of quantification, we used the measured value.

Standardized morbidity ratios (SMRs) of symptoms, diagnoses, and lung function 

abnormalities were calculated using data obtained from the United States adult population 

adjusted for race/ethnicity (white, black, Hispanic), sex, age, and smoking status (13). For 

spirometric restriction, we also examined the effect of body mass index.
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Relationships between exposure and health outcomes were evaluated after stratifying by 

plasma indium concentration on the basis of the median and tertile values. Normally 

distributed data were evaluated for equal variance by the O'Brien test and analyzed by 

Student's t test (for two groups) or ANOVA (for more than two groups). Nonnormally 

distributed data were analyzed by the Mann-Whitney U test (for two groups) or by the 

Kruskal-Wallis test (for more than two groups). For categorical data, χ2 test or Fisher's exact 

test were used. Recursive partitioning also was used to create plasma indium categories that 

achieve the maximum association between plasma indium and the health outcome of 

interest.

Logistic regression was used to assess the relationship between plasma indium (categorized 

by the median value) and dichotomous health outcomes. Spline and linear regression models 

were used to assess the relationship between plasma indium (or the natural log of plasma 

indium) and continuous health outcomes. For the spline regression models, we developed 

restricted cubic splines using a published SAS macro (21). Restricted cubic splines are a 

type of spline regression in which polynomials are defined over adjacent intervals and joined 

together at a small number of “knots.” We specified five knots and modeled the difference 

between the value of the health outcome for any given plasma indium concentration and the 

value of the health outcome for a reference plasma indium concentration. We set the 

reference plasma indium concentration at half of the limit of detection because it was the 

lowest value assigned to any participant.

Final adjusted models included the following covariates: cigarette smoking status (current/

former/never), facility tenure (years), and age (years). Age was not included as a covariate in 

models of percent predicted values of lung function parameters because the percent 

predicted values account for age. The effect of prior occupational exposures was also 

examined.

Analyses were conducted using SAS software version 9.3 and JMP software version 10.0.1 

(SAS Institute, Inc., Cary, NC). All P values reported are two-sided. We considered P ≤ 

0.05 to be significant.

Results

Participant Health Outcome Variables

Eighty-seven (93%) of 94 eligible indium–tin oxide facility employees participated in the 

study (Table 1). Median facility tenure was short (2 yr), and approximately half of the 

participants worked in production. Nineteen (22%) of the 87 participants were included in 

the previous review of corporate medical surveillance records (7). All 87 participants 

completed the questionnaire, and most underwent lung function testing (n = 75; 86%), serum 

biomarker analysis (n = 80; 92%), and a chest HRCT scan (n = 70; 80%).

The majority (56%) of participants were asymptomatic; 6 to 22% reported a chest symptom 

or a prior or current diagnosis of asthma (Table 2). Most (n = 14; 74%) asthma diagnoses 

were made before employment at the facility. Two participants reported a diagnosis of lung 

scarring or fibrosis; none reported a current diagnosis of chronic obstructive lung disease. 
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Few participants had an abnormality of spirometry or gas diffusion (Table 2). There were no 

associations between spirometric or diffusing capacity abnormalities and smoking status, but 

the FEV1% and FEV1/FVC ratio were significantly lower in current smokers (not shown). In 

adjusted comparisons with the United States adult population, participants had significantly 

higher-than-expected prevalence of wheeze in the last 12 months (SMR 1.6; 95% confidence 

interval [CI], 1.0–2.5), lifetime asthma diagnosis (SMR, 3.2; 95% CI, 2.1–5.1), and current 

asthma diagnosis (SMR, 2.7; 95% CI, 1.4–5.2). Other symptoms and spirometric 

abnormalities were not in excess.

Of the 70 participants who had a chest HRCT, none had radiologic evidence of pulmonary 

alveolar proteinosis, two had evidence of early fibrosis, and four others had evidence of 

emphysema (centrilobular in one and paraseptal in three). The signs of emphysema occurred 

in current smokers between 26 and 42 years of age, with 6 to 29 pack-year smoking 

histories. Most (n = 5) of these radiographic abnormalities occurred in participants who 

reported prior exposure to asbestos, silica, or other lung hazards (P = 0.3971).

Of the 80 participants who provided blood samples for biomarker analysis, KL-6 was 

elevated in 46 (58%), YLK-40 in 15 (19%), SP-D in 8 (10%), and CRP in 2 (3%). None had 

elevation of LDH or GM-CSF autoantibodies. Median KL-6 and SP-D were significantly 

lower in current smokers than in other participants (not shown).

Plasma Indium and Tin

Indium was detected in nearly all of the 80 participants evaluated (n = 76; 95%), and 

concentrations were quantifiable in most of the participants (n = 70; 88%). Fourteen (18%) 

had plasma indium concentrations ≥ 3 μg/l, with a maximum value of 37 μg/l. The median 

plasma indium concentration was 1.0 μg/l (Table 3). The median plasma indium 

concentration was higher in participants with tenure of ≥ 2 years compared with <2 years 

(Table 3). The median plasma indium concentration also varied by job category (Table 3).

Only two participants had quantifiable concentrations of tin in plasma.

Relationship between Plasma Indium and Health Outcomes

Stratification by the median plasma indium concentration of 1 μg/l demonstrated multiple 

associations between plasma indium and health outcomes (Table 2). Participants in the 

higher plasma indium group had a higher prevalence of dyspnea, wheeze in the absence of 

an upper respiratory infection, and lifetime asthma diagnosis (Table 2). These associations 

remained evident in logistic regression models adjusted for smoking status (not shown). In 

particular, dyspnea remained associated with plasma indium concentration ≥ 1 μg/l in a 

model adjusted for age, smoking status, facility tenure, and prior exposure to asbestos, silica, 

or other lung hazards (odds ratio, 5.3; 95% CI, 1.2–30.5; P = 0.0267).

The mean FEV1% and mean FVC% were lower in the higher plasma indium group (Table 

2). Although the prevalence of specific spirometric abnormalities did not differ, the 

prevalence of any spirometric abnormality was increased in the higher plasma indium group 

(Table 2). Although similar trends in means and prevalence of abnormalities were observed 

for the gas diffusion parameters, the differences were not significant (Table 2). Chest HRCT 

Cummings et al. Page 6

Ann Am Thorac Soc. Author manuscript; available in PMC 2015 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



abnormalities consistent with indium lung disease did not differ by plasma indium group 

(not shown). None of the health outcomes associated with plasma indium in these 

unadjusted analyses was associated with prior exposure to asbestos, silica, or other lung 

hazards (not shown).

The median serum KL-6 and median serum SP-D were higher in the higher plasma indium 

group (Table 2). Furthermore, the prevalence of participants with an elevated KL-6 was 

higher in the higher plasma indium group (75% vs. 40%; P = 0.001). In contrast, the 

difference in prevalence of participants with an elevated SP-D (15% vs. 5%) was not 

significant.

Stratification by tertile of plasma indium concentration (i.e., <0.5, 0.5 to <1.6, ≥1.6 μg/l) 

also demonstrated increases in adverse health outcomes with increasing plasma indium 

concentration (not shown). Significant differences were observed for FEV1% and KL-6. 

Mean FEV1% was 104 ± 1.9 for the lowest tertile, 93 ± 3.5 for the middle tertile, and 93 ± 

2.6 for the highest tertile (P = 0.001). Median KL-6 (U/ml) was 406 (IQR, 303–606) for the 

lowest tertile, 493 (IQR, 370–577) for the middle tertile, and 818 (IQR, 609–1,360) for the 

highest tertile (P < 0.0001). These observations were consistent with the outcomes of 

recursive partitioning, which identified plasma indium concentrations of 0.5 μg/l for FEV1% 

(indium <0.5 μg/l: n = 24, mean = 103.9; indium ≥0.5 μg/l: n = 51, mean = 93.0) and 2.1 

μg/l for KL-6 (U/ml) (indium <2.1 μg/l: n = 58, mean = 464; indium ≥2.1 μg/l: n = 22, mean 

= 1,115) as cutoffs for maximal association between plasma indium concentration and these 

health outcomes.

Adjusted restricted cubic splines for FEV1%, FVC%, KL-6, and SP-D by plasma indium 

concentration showed nonlinear relationships (Figure 1) and demonstrated that the estimated 

FEV1% and FVC% were lower and the estimated KL-6 and SP-D were higher than the 

corresponding values for the reference plasma indium concentration of 0.015 μg/l. 

Significant differences were seen for FEV1% starting at a plasma indium concentration of 

1.0 μg/l, for FVC% and KL-6 at 1.5 μg/l, and for SP-D at 7.0 μg/l (Table 4).

In unadjusted linear regression models, FEV1% and FVC% were not associated with plasma 

indium concentration (not shown) but were associated with the natural log of plasma indium 

concentration (Table 5). KL-6 and SP-D were associated with both plasma indium 

concentration (not shown) and the natural log of plasma indium concentration (Table 5). 

Including smoking status, facility tenure, and age as covariates had little effect on the 

coefficients for the indium variable or the significance of the models (Table 5). In addition, 

including prior exposure to asbestos, silica, or other lung hazards as a covariate in the 

models had little effect (not shown).

Discussion

In an indium–tin oxide production and reclamation workforce with a median tenure of 2 

years, median plasma indium concentration below the current Japanese standard of 3.0 μg/l 

(22), and few radiographic abnormalities on chest HRCT, we found consistent associations 

between plasma indium concentration and clinical, functional, and laboratory biomarkers. 
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Higher plasma indium concentrations were associated with more dyspnea, reduced lung 

function, and increased serum KL-6 and SP-D concentrations. These differences were not 

explained by age, smoking status, length of employment at the facility, or prior occupational 

exposures and were observed at lower plasma indium concentrations than previously 

reported (5). On the basis of these findings, we recommend efforts to further reduce 

exposure to indium compounds in this industry and the use of medical surveillance in at-risk 

workforces, which includes, at a minimum, a sensitive plasma indium test and high quality 

spirometry.

Our results indicate that spirometry is a sensitive measure of the early adverse effects of 

indium exposure on the lungs. Although specific spirometric abnormalities were not 

increased for the entire group compared with national rates, participants with higher plasma 

indium concentrations had a higher prevalence of any spirometric abnormality than 

participants with lower plasma indium concentrations. A restrictive pattern was the most 

common abnormality, which is consistent with prior reports (2, 7). Furthermore, results for 

FEV1% and FVC% suggest that indium compound exposures corresponding to plasma 

indium concentrations as low as 0.5 μg/l are associated with adverse effects on lung 

function. Restricted cubic spline analyses revealed a maximum effect at a plasma indium 

concentration of only 1.5 μg/l, a value at which FEV1% and FVC% were 18 and 11 

percentage points lower, respectively, than corresponding reference values. Our results 

differ from previous reports that either did not identify any relationship between serum 

indium concentration and spirometric parameters or only identified differences at high 

serum indium concentrations (≥20 μg/l) (3–5). One explanation is that our approach 

extended beyond simple linear analysis and included spline regression and log 

transformation of the exposure metric, which were important in detecting the associations. 

High-quality spirometric measurements and the use of robust reference equations may also 

have contributed (15, 16). It is also possible that the exposure–response relationship varies 

by plasma indium concentration and is steeper at the lower end of exposure.

The serum biomarkers KL-6 and SP-D appear to be sensitive indicators of early adverse 

effects of indium compound exposure on the lungs. KL-6 was elevated in >50% of 

participants and SP-D was elevated in 10%, and both biomarkers were positively associated 

with plasma indium concentration. Results for KL-6 were particularly striking: participants 

in the highest tertile of plasma indium (≥1.6 μg/ l) had a median KL-6 more than double that 

of participants in the lowest tertile of plasma indium (<0.5 μg/l), and significant effects were 

noted with spline regression at a plasma indium concentration of 1.5 μg/l. SP-D appeared 

less sensitive than spirometric parameters and KL-6, with significant effects noted with 

spline regression at a plasma indium concentration of 7.0 μg/l. Although other explanations 

are possible, the associations between plasma indium and these biomarkers of lung disease 

are likely to reflect the effect of exposure to indium compounds. These associations have 

been observed consistently in indium-exposed workforces globally (5, 6, 23), and a recently 

reported 5-year follow-up of indium workers found that serum indium, KL-6, and SP-D 

declined to similar degrees with cessation or reduction of exposure (24).

In contrast, LDH and CRP, two widely used clinical laboratory tests, were rarely elevated 

and were not associated with plasma indium concentration. YKL-40 was elevated in nearly 
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20% of participants, but levels were not associated with plasma indium concentration. GM-

CSF autoantibody concentration was not increased in any participant and was not associated 

with plasma indium concentration. If indium compound exposure can provoke an anti–GM-

CSF autoimmune response, as suggested previously (8, 25), these results do not support the 

monitoring of serum GM-CSF autoantibody levels in at-risk individuals in the absence of 

signs or symptoms of pulmonary alveolar proteinosis.

The excesses of wheeze and asthma and their association with plasma indium concentration 

were unanticipated. Because asthma is a common diagnosis, it is possible that some indium–

tin oxide workers with indium compound exposure–related respiratory symptoms were 

misdiagnosed with asthma. However, most asthma diagnoses preceded employment. Further 

evaluation of these associations using diagnostic tests for asthma may be useful.

The prevalence of restrictive spirometry in this study (11%) was lower than that found at the 

same facility in a previous report (31%), in which half of the participants had plasma indium 

concentrations ≥ 5 μg/l, one participant was a sentinel case, and most participants were no 

longer employed at the facility at the time of the current study (7, 8). This difference could 

be related to exposure reduction within the facility over time or to the introduction of new 

hires and/or the inclusion of nonproduction workers in the current study. Indeed, nearly 80% 

of the participants in the current study were not included in the previous evaluation. Half of 

the participants in our 2012 study had been hired in the preceding 2 years and 75% had been 

hired in the preceding 5 years, so few of the participants had worked at the facility when the 

cases of pulmonary alveolar proteinosis occurred (1999–2005) or when high rates of 

restrictive spirometry were documented (2002–2010). Systematic longitudinal exposure 

assessment is lacking, but the intervening introduction of engineering controls (e.g., machine 

enclosures, isolation of some dusty processes, and expanded use of task-based respiratory 

protection) likely reduced exposures for these more recently hired workers. We chose to 

include nonproduction workers (e.g., accountants, human resources specialists, customer 

service coordinators, and managers) due to concerns that they may have had unappreciated 

exposures. Four of these participants had plasma indium concentrations above the limit of 

quantification, confirming that even some office-based participants were exposed to indium 

compounds. Nonetheless, their inclusion contributed to expanding the range of exposures 

experienced by the study participants and to enabling the evaluation of an exposure–

response relationship.

Associations between interstitial or emphysematous abnormalities on HRCT and plasma 

indium concentration have been previously reported (3, 5). The lack of such associations in 

the present study may be because these abnormalities were uncommon among participants. 

In addition, not all participants underwent HRCT, which may have hindered our ability to 

detect associations between plasma indium concentration and radiographic abnormalities. 

Nonetheless, the relatively young ages (26–42 yr) and limited smoking histories (6–29 pack-

yr) of the participants with emphysema on HRCT make it difficult to attribute these 

abnormalities solely to smoking.

The lack of association between diffusing capacity and plasma indium concentration was 

also unexpected and differs from a prior report in which DLCO was reduced in participants 
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with serum indium concentrations of 22 to 127 μg/l (3). It is possible that, compared with 

changes in spirometric parameters and serum biomarkers, changes in diffusing capacity 

occur with higher exposure or later in the course of disease. The lack of contemporary 

population-based reference equations may also have contributed. We used reference 

equations developed from a representative sample of an industrial state, but those equations 

are more than 30 years old and were based on analyses that included only white adults and 

relatively few nonsmokers (18). Thus, comparing our measurements to the predicted values 

may have introduced some bias.

Two thirds of the previously studied production workers (7) were no longer employed at the 

facility, and their exclusion from this study may have obscured (for HRCT and diffusing 

capacity) or altered (for spirometry and serum biomarkers) relationships between plasma 

indium concentration and adverse health outcomes variables. Current workers with longer 

tenure and higher plasma indium concentrations may comprise a “survivor” group that is 

healthier than the initial cohort. There is evidence from the spline regressions (Figure 1) of 

such a survival effect (26). For FEV1% and FVC%, there is a nadir in the difference from 

the reference at 1.5 μg/l, and the difference is smaller at higher plasma indium 

concentrations. This pattern could be interpreted, erroneously in our opinion, as indicating 

that a higher indium exposure is protective. Furthermore, the slope of KL-6 (or SP-D) versus 

plasma indium concentration is steep initially but flattens out at higher plasma indium 

concentrations. Although this pattern could be interpreted as suggesting that a level of 

plasma indium exists above which no further adverse effects occur, a more constant slope 

may have been observed if former workers had been included in the present study. 

Nonetheless, our findings remain robust even if a survival effect led us to underestimate 

health effects of exposure to indium compounds.

A previous evaluation (7) and air sampling conducted at the time of this study indicate that 

exposures in this facility exceeded the Japanese standard for respirable indium of 0.0003 

mg/m3 throughout the facility and exceeded the NIOSH-recommended exposure limit for 

total indium of 0.1 mg/m3 in most production areas. Little is known about the relationship 

between airborne levels of indium and plasma indium concentration. Our observation that 

participants with longer tenure had higher mean plasma indium concentration is consistent 

with the conceptualization of plasma indium as a metric of cumulative exposure. One study 

examined workers exposed to indium oxide, indium hydroxide, and indium chloride at an 

indium ingot production facility. Plasma and urine indium concentrations were stable over 

the workweek, and there were no correlations between measured air and plasma or urine 

indium concentrations (27). Nakano and colleagues showed that mean serum indium 

concentration was comparable (8.4 vs. 9.6 μg/l) between current workers and former 

workers whose indium exposure ended an average of nearly 5 years before the study (5). 

Although information on the former workers' earlier serum indium levels was lacking, this 

observation is consistent with accumulation of a lung burden of indium and slow clearance 

from the body. Indeed, in hamsters exposed to indium–tin oxide or indium oxide by 

intratracheal instillation, serum indium concentration increased consistently during the 

follow-up period, up to 78 weeks after the final exposure (28).
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Conclusion

In this indium–tin oxide workforce with short tenure, low median plasma indium 

concentration, and few abnormalities on HRCT, we found consistent associations between 

plasma indium concentration and adverse respiratory health effects. These differences were 

not explained by age, smoking status, tenure, or previous occupational exposure and were 

observed at lower plasma indium concentrations than previously reported. Until more is 

known about long-term outcomes, ongoing medical surveillance of workers and preventive 

efforts aimed at lowering exposures are prudent.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Restricted cubic splines show the relationship between percent predicted FEV1, percent 

predicted FVC, Krebs von den Lungen (KL)-6, surfactant protein (SP)-D (vertical axis), and 

plasma indium (horizontal axis), adjusted for smoking status (current/former/never) and 

facility tenure (years). Splines for KL-6 and SP-D are also adjusted for age (years). The 

splines model the estimated difference in the value of the health outcome compared with a 

referent (value in the health outcome for plasma indium concentration of 0.015 μg/l, which 

is half of the limit of detection). CL = confidence limit; Obs = observation.
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Table 1
Demographic and employment data of the participating indium–tin oxide facility 

employees*

All Participants Plasma Indium < 1 μg/l Plasma Indium ≥ 1 μg/l P Value†

Number 87 40 40

Age, yr (range) 44 (35–52)‡ 43 (33–50) 47 (40–52) ns

Male 75 (86) 31 (78) 37 (93) 0.055

Race ns

 White 63 (72) 31 (78) 27 (68)

 Asian 9 (10) 4 (10) 5 (13)

 Black 3 (3) 0 2 (5)

 Other/unknown 12 (14) 5 (13) 6 (15)

 Hispanic 8 (9) 3 (8) 4 (10) ns

Smoking status 0.088

 Current 22 (25) 12 (30) 8 (20)

 Former 20 (23) 5 (13) 13 (33)

 Never 45 (52) 23 (58) 19 (48)

 Tenure, yr§ 2 (1.3–5.0) 1.3 (1.0–2.0) 2.8 (1.9–8.2) <0.0001

Job category 0.007

 Production 44 (51) 15 (38) 27 (68)

 Production support 23 (26) 10 (25) 9 (23)

 Laboratory 8 (9) 5 (13) 3 (8)

 Office 12 (14) 10 (25) 1 (3)

Past work with asbestos, silica, or other lung hazards 53 (61) 24 (60) 25 (63) ns

Definition of abbreviation: ns = nonsignificant.

*
Eighty seven (93%) of 94 individuals employed at the facility participated in the study.

†
P values are based on comparison of the two subgroups defined by plasma indium concentration (<1 and ≥1 μg/l) using χ2 test or Fisher's exact 

test for categorical variables and the Mann-Whitney U test for continuous variables. P ≤ 0.05 was considered significant; P values ≤ 0.10 are 
presented.

‡
Data are presented as median (interquartile range) or n (%).

§
Tenure as a facility employee was calculated from self-reported hire date.
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Table 2
Clinical characteristics, pulmonary function, and serum biomarkers of the participating 
indium–tin oxide facility employees

Subject Characteristics All Participants Plasma Indium < 1 μg/l Plasma Indium ≥ 1 μg/l P Value*

Symptom or diagnosis (n = 87) (n = 40) (n = 40)

 Asymptomatic 49 (56)† 25 (63) 20 (50) ns

 Cough 14 (16) 7 (18) 7 (18) ns

 Chronic cough‡ 9 (10) 4 (10) 5 (13) ns

 Sputum production 10 (11) 4 (10) 6 (15) ns

 Chronic sputum production‡ 4 (5) 3 (8) 1 (3) ns

 Dyspnea 14 (16) 3 (8) 10 (25) 0.030

 Wheeze§ 19 (22) 7 (18) 10 (25) ns

 Wheeze without URI§ 5 (6) 0 5 (13) 0.055

 Chest tightness§ 10 (11) 7 (18) 3 (8) ns

Asthma (self-reported)

 Past or current 19 (22) 5 (13) 12 (30) 0.053

 Current 9 (10) 2 (5) 6 (15) ns

Spirometry (n = 75) (n = 37) (n = 37)

 FEV1% predicted (mean ± SEM) 96 ± 1.7 102 ± 1.9 92 ± 2.6 0.002

 FVC % predicted (mean ± SEM) 99 ± 1.6 103 ± 1.9 95 ± 2.3 0.012

 FEV1/FVC % 79 (73–85) 79 (74–85) 81 (68–85) ns

 Obstructive pattern‖ 3 (4) 0 3 (8) ns

 Restrictive pattern¶ 8 (11) 2 (5) 5 (14) ns

 Mixed pattern** 1 (1) 0 1 (3) ns

 Any abnormality†† 12 (16) 2 (5) 9 (24) 0.018

Diffusing capacity‡‡ (n = 74) (n = 36) (n = 37)

DLCO % predicted (mean ± SEM) 91 ± 1.7 94 ± 2.3 89 ± 2.6 ns

VA % predicted (mean ± SEM) 91 ± 1.4 94 ± 1.9 89 ± 1.9 0.056

Low DLCO 8 (11) 2 (6) 6 (16) ns

Low VA 9 (12) 3 (8) 6 (16) ns

Serum biomarker (n = 80) (n = 40) (n = 40)

 CRP, mg/l 0.9 (0.5–2.2) 0.9 (0.5–2.5) 0.7 (0.5–1.8) ns

 LDH, IU/ml 53 (47–60) 52 (48–58) 54 (46–61) ns

 YKL-40, ng/ml 62 (40–96) 63 (40–100) 59 (37–92) ns

 KL-6, U/ml 542 (372–730) 433 (334–560) 649 (469–984) <0.0001

 SP-D, ng/ml 163 (113–233) 147 (94–216) 187 (146–302) 0.027

 GM-CSF autoantibodies, μg/ml 0.5 (0.3–0.7) 0.5 (0.4–0.7) 0.4 (0.3–0.6) 0.075

Definition of abbreviations: CRP = C-reactive protein; DLCO = diffusing capacity of the lungs for carbon monoxide; GM-CSF = granulocyt factor; 

KL = Krebs von den Lungen; LDH = lactate dehydrogenase; ns = nonsignificant; SP-D = surfactant protein-D; URI = upper respiratory infection; 
VA = alveolar volume.
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*
P values are based on comparison of the two subgroups defined by plasma indium (<1 and ≥1 μg/l) using χ2 test or Fisher's exact test for 

categorical variables. For continuous variables, Student's t test was used for normally distributed data and the Mann Whitney U test for 
nonnormally distributed data. P ≤ 0.05 was considered significant; P values ≤ 0.10 are presented.

†
Data are presented as median (interquartile range) or n (%) unless otherwise noted.

‡
Chronic symptoms defined as occurring most days for ≤3 consecutive mo/yr.

§
Any occurrence in the 12 mo preceding evaluation in this study.

‖
Defined as FEV1/FVC and FEV1 below their respective lower limits of normal (fifth percentiles) and FVC above the lower limit of normal (fifth 

percentile).

¶
Defined as FVC below the lower limit of normal (fifth percentile) and FEV1/FVC above the lower limit of normal (fifth percentile).

**
Defined as FEV1/FVC and FVC below their respective lower limits of normal (fifth percentiles).

††
Defined as having obstructive, restrictive, or mixed pattern.

‡‡
Test results for one participant were excluded because they were inadequate.
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Table 3

Plasma indium concentrations of the participating indium–tin oxide facility employees*

Group Number Plasma Indium (μg/l) P Value†

All participants 80 1.0 (0.2–2.3)‡

Tenure§ <0.0001

 ≤2 yr 40 0.4 (0.1–1.1)

 >2 yr 40 1.6 (0.9–5.5)

Job category‖ <0.0001

 Production 42 1.6 (0.8–3.3)

 Production support 19 0.8 (0.2–1.4)

 Laboratory 8 0.6 (0.2–1.8)

 Office 11 0.03 (<0.03–0.3)

*
Eighty (85%) of 94 individuals employed at the facility had plasma indium concentration measured.

†
P values are based on comparisons within groups (tenure or job category) using the Mann-Whitney U test. P ≤ 0.05 was considered significant.

‡
Data are presented as median (interquartile range).

§
Tenure as a facility employee was calculated from self-reported hire date.

‖
Participants in production jobs spent most of their time in production areas where indium compounds were handled in large quantities. Participants 

in production support jobs spent some of their time in production areas. Participants in laboratory jobs spent most of their time in the quality 
control laboratory where indium compounds were handled in smaller quantities. Participants in office jobs spent most of their time in 
administrative or other nonproduction areas where indium compounds were not handled.
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Table 4
Difference from reference values for pulmonary function parameters and serum 

biomarkers by plasma indium concentration*

Plasma Indium†
Difference (95% CI)‡

FEV1, % FVC, % KL-6 (U/ml) SP-D (ng/ml)

0.5 μg/l 0.3 (−10 to 11) 1.2 (−9.3 to 12) 158 (−123 to 439) 50 (−52 to 153)

1.0 μg/l −12 (−21 to −3.9) −7.9 (−16 to 0.7) 143 (−83 to 369) 19 (−64 to 101)

1.5 μg/l −17 (−25 to −8.4) −11 (−19 to −2.8) 232 (17 to 447) 12 (−67 to 90)

2.0 μg/l −14 (−22 to −6.3) −9.5 (−17 to −1.6) 395 (189 to 601) 30 (−45 to 105)

3.0 μg/l −9 (−18 to −0.6) −6.3 (−15 to 2.4) 658 (427 to 888) 63 (−20 to 147)

5.0 μg/l −4.5 (−15 to 6.0) −3.7 (−14 to 6.8) 920 (638 to 1,202) 101 (−2.3 to 204)

7.0 μg/l −3.9 (−14 to 6.6) −4.2 (−15 to 6.4) 976 (692 to 1,259) 115 (11 to 218)

9.0 μg/l −4.2 (−14 to 6.0) −5.4 (−16 − 4.9) 982 (707 to 1,258) 123 (23 to 224)

Definition of abbreviations: CI = confidence interval; KL = Krebs von den Lungen; SP-D = surfactant protein-D.

*
Pulmonary function data are for 74 (85%), and serum biomarker data are for 80 (92%) of 87 participants in this study.

†
The reference group comprised the 4 (5%) participants with assigned plasma indium concentration of 0.015 μg/l (half of the limit of detection).

‡
Differences were calculated using restricted cubic spline regression. Differences with 95% CIs that exclude 0 are in bold.
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Table 5
Linear regression models of log-transformed plasma indium concentration and health 

outcome variables*

Dependent Health Outcome Variable Covariate(s)† Coefficient (β) P Value‡

FEV1% None −2.31 0.015

FEV1% Smoking status, tenure −2.14 0.025

FVC% None −2.00 0.021

FVC% Smoking status, tenure −2.10 0.022

KL-6, U/ml None 133 <0.0001

KL-6, U/ml Smoking status, tenure, age 146 <0.0001

SP-D, ng/ml None 23.8 0.007

SP-D, ng/ml Smoking status, tenure, age 17.9 0.040

Definition of abbreviations: KL = Krebs von den Lungen; SP-D = surfactant protein-D.

*
Pulmonary function data are for 74 (85%) and serum biomarker data are for 80 (92%) of 87 participants in this study.

†
Smoking status was defined as current/former/never; facility tenure and age were in years.

‡
P value is based on test.
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